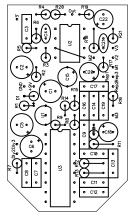
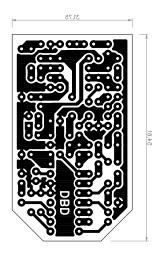


The Depth

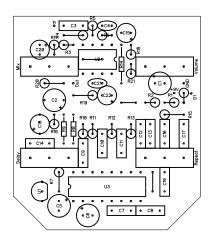
Based on Mad Professor Deep Blue Delay PCB artwork ©2015 drdFX Release date: 2015.08.10.

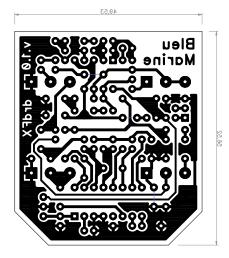
The Depth is an almost 1:1 clone of the Mad Professor Deep Blue Delay. It is a very nice PT2399 based digital delay. The only difference to the original is the added "Volume" pot that controls the overall volume of the effect.

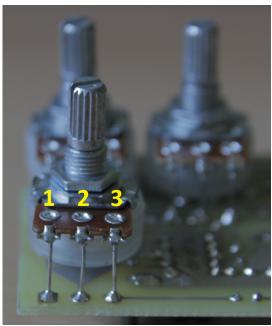

SCHEMATIC



LAYOUT

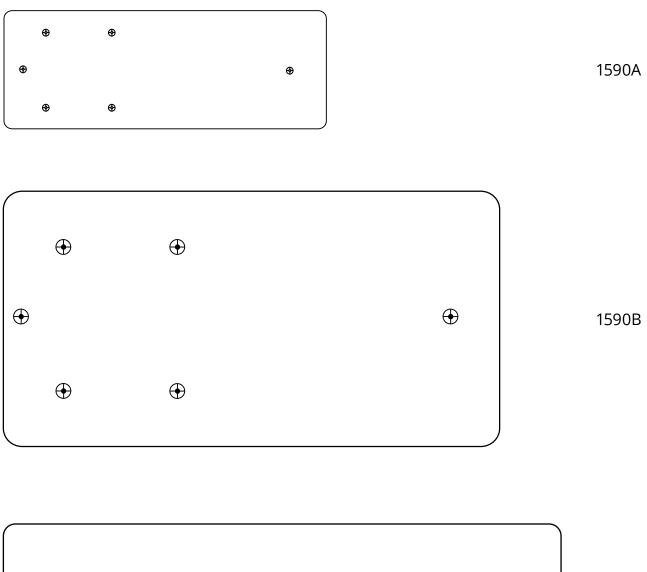

Print out the PCB design without any resizing options and make sure you switch off the "fit to page" option. The design is free for personal/home use and you also may build one or two for your friends, but the PCB layout is my artwork, therefore protected by copyright and is not permitted to be used for commercial purposes.

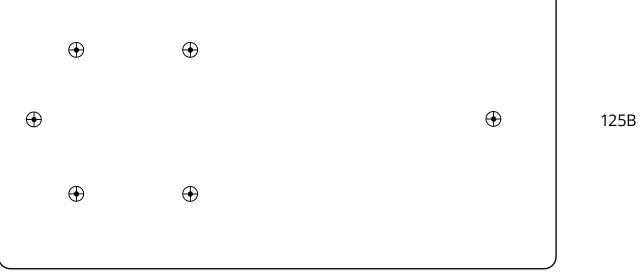

1590A layout and PCB


1590B/125B layout and PCB

R2 10k C2 47u U1 L78L05 M R3 10k C3 22n U2 OP275 R	Others Delay B50k Mix B50k
R210kC247uU1L78L05MR310kC322nU2OP275RR41MC447pU3PT2399VR5180kC547uR6360kC647uR72.7kC7100nR810kC8100nR910kC92.2nR101kC102.2n	,
R310kC322nU2OP275RR41MC447pU3PT2399VR5180kC547uR6360kC647uR72.7kC7100nR810kC8100nR910kC92.2nR101kC102.2n	Mix B50k
R41MC447pU3PT2399VR5180kC547u </td <td></td>	
R5 180k C5 47u R6 360k C6 47u R7 2.7k C7 100n R8 10k C8 100n R9 10k C9 2.2n R10 1k C10 2.2n	Repeat B50k
R6 360k C6 47u 100 R7 2.7k C7 100n 100n R8 10k C8 100n 100n R9 10k C9 2.2n 100n R10 1k C10 2.2n 1000	Volume B25k
R7 2.7k C7 100n I R8 10k C8 100n I I R9 10k C9 2.2n I I I R10 1k C10 2.2n I I I I	
R8 10k C8 100n R9 10k C9 2.2n R10 1k C10 2.2n	
R9 10k C9 2.2n R10 1k C10 2.2n	
R10 1k C10 2.2n	
R11 20k C11 100p	
R12 10k C12 100n	
R13 10k C13 15n	
R14 10k C14 10n	
R15 5k C15 1u	
R16 2k C16 4.7n	
R17 20k C17 22n	
R18 22k C18 1u	
R19 1k C19 47n	
R20 100k C20 1u	
R21 5.1k C21 100p	
C22 1u	

NOTES


The pots are board mounted to the bottom of the board. The square pads mark the lug 1, for the numbering of the lugs see the picture. For the 1590A size use low profile parts (especially the electrolytic caps) and low profile jack connectors (Neutrik NRJ6HM-1 worked for me the best). The original DBD does not have the "Volume" control, instead of the "Volume" pot and R21 there is one single 12k resistor. Also you can tweak C13 for darker repeats: just replace it with a higher value (33n-47n, or experiment).


The "Delay" pot is a 50k one. This will give you about 600ms maximum delay time. The minimum delay time is defined by R7.

To increase the maximum delay time you can either increase the pot's value, or R7's value or both, however if you increase R7 also the minimum delay time will be longer. Take a note that longer delay times will result in more noise in the repeats – and that is digital noise, not the "pleasant" type...

DRILLING TEMPLATES

Here are three templates for the top of the box for the various box sizes. The larger design fits in both 1590B and 125B, however if you are less experienced you may find the 125B enclosure easier to work with.

